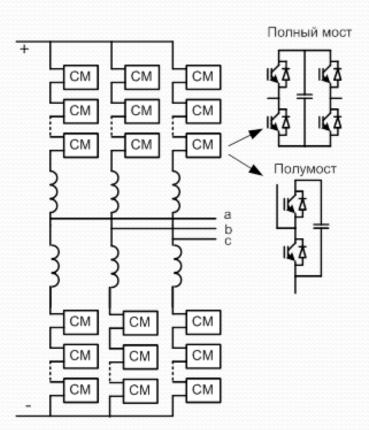

Доклад о деятельности Исследовательского комитета В4 СИГРЭ ««Электропередачи постоянным током высокого напряжения и силовая электроника» (по материалам 45 сессии СИГРЭ)

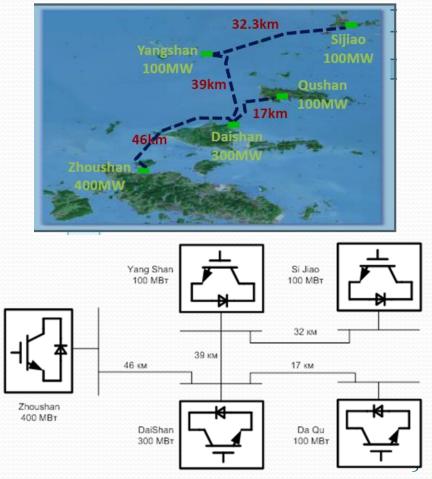


Количество введенных в эксплуатацию и планируемых к строительству объектов постоянного тока напряжением выше 50 кВ по десятилетиям

Модульные многоуровневые преобразователи напряжения

- Преимущества:
- Модульная структура
- Высокая надежность
- Возможность отключения токов КЗ
- Низкий уровень гармонических искажений

Рабочие группы ИК В4: преобразователи напряжения, взаимодействие с примыкающими сетями, области применения, испытания


- 1. WG B4.62: Connection of Wind Farms to Weak AC networks (Присоединение ВЭС к слабым сетям переменного тока)
- 2. WG B4.63: Commissioning of VSC HVDC Schemes (Процедура испытаний ППТН и ВПТН)
- 3. WG B4-67: Harmonic aspects of VSC HVDC and appropriate harmonic limits (Проблемы гармоник объектов ПТ на ПН и стратегии для их ограничения)
- 4. WG N° B4-69 Minimizing loss of transmitted power by VSC during overhead line fault (Минимизация теряемой мощности передаваемой ППТН при коротких замыканиях на воздушных линиях постоянного тока).
- 5. WG A3/B4.34 Technical requirements and specifications of state-of-the-art DC switching equipment (Технические требования и характеристики современного коммутационного оборудования постоянного тока).
- 6. WG B4-70 Guide for Electromagnetic Transient Studies involving VSC converters (Электромагнитные процессы в объектах ПТ на ПН)
- 7. WG B4.64 Impact of AC System Characteristics on the Performance of HVDC Schemes (Влияние примыкающих систем переменного тока на свойства эксплуатационные свойства ППТ и ВПТ)

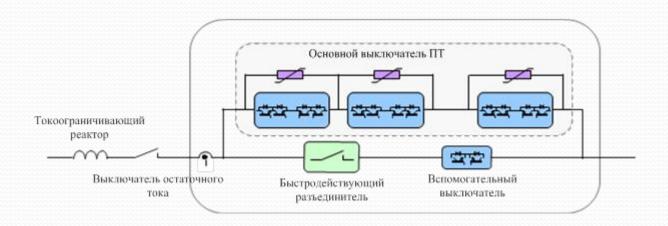
Многотерминальные передачи на преобразователях напряжения

Проект	Год ввода в эксплу атаци ю	Число модуле й в плече	Число термин алов	Напряже ние, кВ	Мощнос ть, МВт	Области применения
Nanhui	2011	50	2	±30	18	Передача электроэнергии от ВЭС
Nanao	2013	200	3	±160	200	Передача электроэнергии от ВЭС
Zhoushan	2014	250	5	±200	400	Энергоснабжение островных территорий
Luoping	2016	400	2		1000	Связь несинхронно работающих систем
Xiamen	2015	400	2		1000	Энергоснабжение мегаполиса

Проект Zhoushan

габочие группы ИК B4: сети постоянного тока

Национальный


- 1. WG B4.56 Guidelines for the preparation of "connection agreements" or "Grid Codes" for HVDC grids («Руководящие указания для подготовки «электросетевого кодекса» для сетей постоянного тока (ПТ) высокого напряжения»).
- 2. WG B4.57 Guide for the development of models for HVDC converters in a HVDC grid («Руководящие указания для разработки моделей оборудования в сети ПТ»).
- 3. WG B4.58 Devices for load flow control and methodologies for direct voltage control in a meshed HVDC Grid («Устройства и методологии для управления перетоками мощности и напряжения в сложнозамкнутых сетях ПТ»).
- 4. JWG B4/B5.59 Control and Protection of HVDC Grids («Регулирование и защита в сетях ПТ»).
- 5. JWGB4/C1.65 «Recommended Voltages for HVDC Grids» («Рекомендуемые напряжения для сетей постоянного тока»)

Выключатель постоянного тока

• Основные характеристики

Номинальное напряжение	80 – 200 кВ	Номинальный ток	1.2 – 1.5kA
Отключаемый ток	До 18 кА	Время срабатывания	2-3 мс

ППТ ультравысокого напряжения

• Основные параметры ППТ УВН ± 1100 кВ Zhundong – Wuhan (ВЛ 3200 км)

Наименование параметров	Параметры		
	Выпрямитель	Инвертор	
Номинальная мощность, МВт	11000	11000	
Номинальное напряжение, кВ	1100	1100	
Номинальный ток, кА	5	5	
Номинальное напряжение сети	750	500	
переменного тока, кВ			
Число 12-пульсных мостов	4	4	
Мощность трансформатора,	563,79	539,66	
MBA			
Реактанс трансформатора, %	20	22	
Число отпаек РПН	+28/-6	+25/-5	
Напряжение холостого хода на	319.03	309.21	
один шестипульсный мост, кВ			
Угол зажигания/угол	15/17	15/17	
погасания, град.			
Индуктивность	60*2	60*2	
сглаживающего реактора в			
полюсе, мГн			

Выводы

- Существует тенденция увеличения количества объектов постоянного тока, внедряемых в энергосистемах различных стран мира
- Развитие технологии передачи электроэнергии постоянным током с помощью преобразователей напряжения
- Создание технической базы для развития сетей ПТ
- Развитие ППТ ультравысокого напряжения в странах с протяженной территорией