Critical corona voltage

For three-phase alternating current line with the location of the conductors at the corners of an equilateral triangle, the critical corona voltage is equal to:

$$
\begin{equation*}
u_{c r}=21,1 \times m_{1} \times m_{2} \times \delta \times r \times \ln \frac{D}{r}[k V], \tag{1}
\end{equation*}
$$

where: m_{1} - roughness coefficient, taking into account the state of the surface of the conductor. For many wires conductor $m_{1}=0,83-0,87$; m_{2} - weather factor, taking into account the state of the weather, with dry and clear weather $m_{2}=1$, in bad weather $m_{2}=0,8$;
r - the outer radius of the conductor, cm ;
D - distance between conductors, cm;
δ - relative density of the air is equal to:

$$
\begin{equation*}
\delta=\frac{3,93 \times \mathrm{b}}{273+\vartheta} \tag{2}
\end{equation*}
$$

In the formula (2):
b - barometric pressure, cm/Hg;
ϑ^{\prime} - temperature, ${ }^{\circ} \mathrm{C}$.
For $\vartheta^{\prime}=+25^{\circ} \mathrm{C}$ and $\mathrm{b}=76 \mathrm{~cm} / \mathrm{Hg}, \delta=1$.
In the most adverse weather conditions (rain storm, heavy fog and so on) the product $m_{1} \times m_{2}$ reduced to a value of 0,55 .

Linear critical corona voltage at the location of the line conductors in the corners of an equilateral triangle is:

$$
U_{c r}=\sqrt{3} \times 21,1 \times m_{1} \times m_{2} \times \delta \times r \times \ln \frac{D}{r}
$$

Replacing the natural logarithm of a decimal, we get:

$$
U_{c r}=84 \times m_{1} \times m_{2} \times \delta \times r \times \log \frac{D}{r} .
$$

Source: Glazunov A.A. Electrical networks and systems - Moscow: State Energy Publishing, 1954, p.86-87. (in Russian)

